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Phase synchronization of chaotic systems with small phase diffusion
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The geometric theory of phase locking between periodic oscillators is extended to phase coherent chaotic
systems. This approach explains the qualitative features of phase locked chaotic systems and provides an
analytical tool for a quantitative description of the phase locked states. Moreover, this geometric viewpoint
allows us to identify obstructions to phase locking even in systems with negligible phase diffusion, and to
provide sufficient conditions for phase locking to occur. We apply these techniques to the Ro¨ssler system and
a phase coherent electronic circuit and find that numerical results and experiments agree well with theoretical
predictions.
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I. INTRODUCTION

While the study of phase locking between periodica
oscillating systems dates back to Huygens@1# the investiga-
tion of phase locking between chaotic systems has a m
recent history. Its occurrence was noted in@2–4# and the
phenomenon has since been observed in such diverse
tems as electrically coupled neurons@5,6#, spatially extended
ecological systems@7#, earthquake models@8#, a plasma dis-
charge tube@9#, and its potential role in brain functions ha
been recognized@10,11#.

Although much work has been done on detecting and a
lyzing chaotic phase synchronization~CPS!, the phenom-
enon is still not completely understood and predictive me
ods are still lacking. In the chaotic systems studied in@4# it is
possible to define a phase variable which varies periodic
up to a small chaotic term. If this chaotic term can be trea
as white noise then the theory developed in@12# is appli-
cable. A similar approach is considered in@13,14# where the
phase is modeled by a stochastically driven overdamped
ticle. Since periodic orbits form a skeleton of a chaotic
tractor, it was argued in@15# that CPS can be described
terms of the phase locking properties of these periodic orb
The detailed structure of attractors in the CPS regime
analyzed further in@16#.

Many of these approaches describe behavior that ag
well with that observed in systems exhibiting CPS. Howev
predictive methods for computing when and how CPS occ
have not been discussed in detail. Moreover, the ques
whether CPS is possible in all phase coherent systems ha
our knowledge, not been addressed.

In the following we describe such predictive metho
based only on information about the unperturbed system,
type of driving signal and the nature of the coupling. W
give a geometrical description of how CPS occurs, and sh
how to predict the driving strength necessary for CPS,
phase difference between the drive and response in the
regime, and by how much this phase difference varies. Mo
over, this approach also identifies a geometric obstructio
CPS in phase coherent systems, which may be present
if the phase diffusion is negligible. This theory is well deve
oped in the case of systems with stable limit cycles@17–20#
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and we address the questions when and how it can be
tended to systems with stable, phase-coherent chaotic at
tors.

In Sec. II we give the mathematical details of how t
geometric theory of periodic phase locking described in@20#
can be extended to chaotic oscillators. These ideas are
plied to the Ro¨ssler equations~Sec. III! and to an electronic
circuit based on the partially linear Ro¨ssler equations~Sec.
IV !, and the theoretical predictions are verified numerica
and experimentally. In Sec. V we further discuss sufficie
conditions under which a phase-coherent attractor can
phase locked to a periodic drive, and demonstrate that
amount of phase diffusion and the geometry of the attrac
are equally important. Sufficient conditions under which
chaotic attractor is phase-coherent are discussed in the
pendix.

II. A DESCRIPTION OF CPS USING ISOCHRONS

A frequent goal in science and engineering is to pred
how the behavior of a periodically oscillating syste
changes when it is subject to an outside perturbation@17,19#.
Ideally such predictions should be based only on informat
about the unperturbed system, and the type of perturba
acting upon it, thus avoiding the work of performing nume
ous experiments. In this section we describe how this can
achieved in the case of a small, periodic perturbation ac
on a chaotically oscillating system.

We first review the theory for a periodically perturbe
nonlinear oscillator following the approach in@20#. Assume
that the systemX85F(X) has an exponentially stable lim
cycle r of periodT. It is possible to find coordinates~f, R!
in a tubular neighborhoodN of r such that the phasef is the
angular distance alongr, R measures the radial distanc
from r, andf85df/dt51.

The level sets off are calledisochronsand define codi-
mension one manifolds that foliateN. Every isochron inter-
sectsr in a single pointqf , called thebasepointof the
isochron. Letw t be the flow ofX85F(X). There existC,k
.0 such that for any pointp on an isochron with basepoin
qf we have uw t(p)2w t(qf)u<Ce2kt. Therefore the
©2001 The American Physical Society34-1
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KREŠIMIR JOSIĆ AND DOUGLAS J. MAR PHYSICAL REVIEW E64 056234
asymptotic behavior of all points on an isochron is the sa
as that of its basepoint.

If the system is subject to a small perturbationep(t) of
periodTd so thatX85F(X)1ep(t), the theory of invariant
manifolds @21# implies that the perturbed system posses
an attracting limit cyclere which isO(e) close tor. A direct
calculation shows that

f8511e“Xfure~f!•p~ t !

511e“Xfur~f!•p~ t !1O~e2!

5
def

11eV~f,t !1O~e2!,

where“Xfure(f) is the gradient off(X) evaluated at the

point re(f) of the perturbed orbit and the first equality fo
lows from the O(e) closeness ofr and re . Since “Xf
points along the direction of fastest increase off, it can be
interpreted as the phase-dependent sensitivity off, and so
V(f,t)5“Xfur(f)•p(t) measures the influence of the pe
turbation on the phase.

Defining the phase difference betweenp(t) and f as C
5f2(T/Td)t and lettingeD512T/Td , we obtain to sec-
ond order ine

C85eFD1VS T

Td
t1C,t D G . ~1!

Averaging this equation over one period of the drive give

C85e@D1G~C!#, ~2!

where the functionG~C! is the average

G~C!5~1/Td!E
0

Td
VS T

Td
t1C,t Ddt. ~3!

If this equation has a stable fixed pointC0 , then the phasef
approaches the solutionf(t)5C01(T/Td)t, so that f(t
1Td)5f(t) and the system is phase locked with the dr
with a phase difference ofC0 .

To extend these ideas to the case of chaotic systems
assume thatX85F(X) possesses a chaotic attractorA and
that there exist coordinates~R, f! in a neighborhood ofA
such that

R85F~R,f!, ~4!

f8511d~R,f!, ~5!

where f is T periodic. We require thatd(R,f) is O(h)
where h!1 except possibly forf in a set of total length
O(h) on whichd(R,f) can beO(1), or, equivalently, that
*0

Td(R,f)df5O(h) for any orbit onA. It follows that f
completes one period in timeT1O(h). Moreover, two
points (R1 ,f) and (R2 ,f) sharing the same initial phas
will remain close in phase for times at leastO(1/h) before
they are separated by the effects of the termd. Therefore the
level sets off form approximate isochrons and the syste
may be calledphase-coherent@22#.
05623
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It is not always clear when such a change of coordina
exists. However, given a system of differential equations
a timeseries it is frequently possible to define a phaseF and
a natural periodT such thatuF(T)2F(0)u,h!1. This can
be done using the Hilbert transform, or other approac
@23–25#. In the Appendix we show that if in additionF is
strictly increasing, then there exists a change of coordina
for which Eqs.~4! and ~5! hold.

The dispersion of the phase due to the termd is frequently
referred to asphase diffusionsince the effect is similar to
that of a random perturbation of a periodically forced pha
oscillator @12#. Let us emphasize thatd does not necessarily
behave liked-function correlated white noise. The correl
tion ^d(t),d(t1t)& t may, in general, decay relatively slowl
with t, and thus the theory developed in@12# is not neces-
sarily valid for CPS. In the following we investigate pha
synchronization whend is small in the sense describe
above. In particular, it is not necessary that the system
chaotic, as long as there are coordinates in which the sys
is given by Eqs.~4! and ~5!. The coordinates~R, f! are not
uniquely defined but may be chosen in any way such thad
satisfies the conditions given above.

As in the periodic case, we want to predict the respons
the phase to a small periodic perturbation by analyzing
systemX85F(X)1ep(t). We assume that the original sys
tem is stable to small perturbations in the sense that the
turbed system has an attractorAe which is close to the at-
tractor of the unperturbed system in the sense that a typ
orbit on A has a counterpart onAe and the two stay close
over one oscillation. In particular, we do not assume that
dynamics on the two attractors is conjugate as, for instan
one ofAe andA could be a chaotic and the other a period
attractor.

Since d(R,f) is continuous in both arguments, it wi
remain small when evaluated along an orbit of the new
tractor Ae . The same calculations as in the periodic ca
yield

f8511d~R,f!1e“Xfu~R,f!•p~ t !, ~6!

where“Xfu(R,f) is the gradient off(X) at a point~R, f!.
We will assume that“Xfu(R,f) satisfies “Xfu(R1 ,f)

5“Xfu(R2 ,f)1O(e) for all pairs of points (R1 ,f),(R2 ,f)
in a neighborhood ofA so that the phase dependent sensit
ity is constant as a function ofR up to terms of ordere. This
is a strong assumption which is approximately satisfied
the systems described in Secs. III and IV, and whose ne
sity will be discussed further in Sec. V.

Using the same definitions as in the periodic case, we n
find up to second order ine:

C85eFD1VS T

Td
1C,t D G1d~R,f!. ~7!

Again, we proceed by averaging the term in the brack
of Eq. ~7!. Following the usual proof of the Averaging Theo
rem @26# we introduce the near identity transformation

C5C̃1eu~C̃,t !,
4-2
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PHASE SYNCHRONIZATION OF CHAOTIC SYSTEMS . . . PHYSICAL REVIEW E 64 056234
whereu(C̃,t)5V(C̃,t)2G(C̃) andG(C̃) is defined as in
Eq. ~2!. It follows that up to second order ine

C̃85e@D1G~C̃!#1 d̃~R,f!, ~8!

whered̃(R,f)5d(R,f)2ed(R,f)]C̃u(C̃,t). If d is small
for all values off then Eq.~8! is of form ~2!, with a small
perturbationd̃ whose exact nature depends on the driv
system.

Since bothC andC̃ andd andd̃ are uniformly close, we
will drop the tildes from now on. Define the region

W5
def

$C:mind,e@D1G~C!#,maxd%.

For e sufficiently large,W is a proper subset of@0,Td#. If C0
is a stable fixed point of Eq.~2! andW the component ofW
containingC0 , a Lyapunov function argument shows thatW
is a stable inflowing region for Eq.~8!. This is shown sche-
matically in Fig. 1.

A similar argument holds ifd(R,f) is of O(1) during a
time of O(h) in the cycle. Ifh5O(e) then for any initial
relative phaseC~0! in Eq. ~8! we have C(t)5C(0)
1O(e) for 0<t<Td . Therefore during one period of th
drive G„C(t)…5G„C(0)…1O(e) andC advances by

C~Td!2C~0!5eE
0

Td
@G„C~0!…1d~R,f!#dt1O~e2!,

~9!

and for sufficiently largee points starting in the basin o
attraction of a stable fixed pointC0 of Eq. ~2! are still at-
tracted to the vicinity ofC0 in Eq. ~8!.

Note that in obtaining Eq.~8! we have only averaged th
periodic termV, but notd. Alternatively we can also averag
d(R,f) over a timenTd!1/e to obtain C85e@D1G(C)
1 d̄(t)# up to second order in e where d̄(t)
51/(nTd)*0

nTd@d„R(t),f(t)…#dt. Sinced(R,f) is not peri-
odic in time, the solution of this equation will in general be
good approximation to the unaveraged solution only
times up to order 1/e @27#, while the approach outlined abov
gives results valid for all time. However, we can still recov
the conclusions of the above argument as follows: Supp

FIG. 1. Schematic representation of Eq.~8! for C8. Once in the
interval W, the relative phaseC cannot escape. The value ofC0

estimates the phase difference between the drive and the sy
response, and the size ofW estimates the variation in this differ
ence.
05623
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that we replaced by d̄ in Eq. ~8! and there exists a trappin
region W for the phase differenceC. Then any solution of
the unaveraged equation starting inW will stay in this wedge
for times up toO(1/e). Therefore we can string togethe
infinitely many intervals over which this solution is valid t
show thatW is a trapping region of the unaveraged equat
for all time. Although the solutions of the averaged and u
averaged equations may not remain close, we can still c
clude that both will remain trapped aroundC0 for all time. It
is therefore a matter of convenience whether we choos
averaged(R,f) or not. Since averagingd(R,f) is justified,
average quantities such as the phase diffusion constan
meaningful in estimating the size ofd even whend is differ-
ent from white noise, as long as the average is approac
quickly compared to 1/e.

For periodic systems the transition to phase locking
curs as follows: Ase increases, the graph ofe@D1G(C)# is
dilated vertically~see Fig. 1!. System~2! nears a saddle-nod
bifurcation andC spends more time in the vicinity of th
incipient bifurcation point. At a critical value ofe, Eq. ~2!
undergoes a saddle-node bifurcation, giving birth to a sta
fixed point C0 . At this point the system enters the 1:1 A
nold tongue and phase locks to the drive. The transition
CPS in the perturbed system~7! is similar, but more gradual
Even as the saddle-node bifurcation gives rise to a sta
point C0 of Eq. ~2!, the termd in Eq. ~7! may cause the
phase to slip out of a neighborhood ofC0 . If Td.T, then
eD.0 and the graph ofG~C! is shifted upwards. In this cas
d typically causes a forward slip in the phase. IfTd,T, the
opposite is true. Ase grows, these slips become rarer a
disappear altogether with the creation of a trapping regionW
for the phase. If maxd and min d remain approximately
constant ase is increased, then the regionW moves and
becomes narrower, and phase locking typically becom
tighter. This process is illustrated in Secs. III and IV, and
Fig. 2.

It will be shown in Sec. V that it is frequently importan
to assume that“Xfu(R,f) is approximately constant inR. We
also note that the existence of the regionW is a sufficient, but
not necessary condition for CPS. The attraction to an
proximately phase locked state may become stronger
the phase diffusion even before the coupling is sufficien
strong for the regionW to appear. This depends on the pa
ticular form of the termd, and without further assumptions
is difficult to say more.

The termd(R,f) is a deterministicnoise term. More in-
formation about this term leads to additional informati
about the phase locked state. In@24,28# it is argued thatd can
typically be approximated by fractional Brownian motio
Intermittent spikes ind may lead to intermittent phase slip
@29#. Statistical information about such spikes yields dire
information about the frequency of phase slips in such s
tems @30#. Note that we have only assumed thatd is small
and not that it is modeled well by any particular stochas
process.

In this argument it was assumed that the periodic driv
has only a small effect on the attractorA and thate is small
enough to justify averaging. However,e needs to be suffi-
ciently large for a phase trapping regionW to appear. These

em
4-3
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KREŠIMIR JOSIĆ AND DOUGLAS J. MAR PHYSICAL REVIEW E64 056234
two opposing conditions one may not always be compatible
It is therefore necessary to treat phase-coherent attra
case by case. Fortunately perturbation results often hold f
wide range of values ofe, and we therefore expect that the
ideas are widely applicable.

III. THE RÖ SSLER SYSTEM

In this section we consider the Ro¨ssler system with a pe
riodic drive in thex variable@31#

x852y2z1e sinvdt,

y85x1by, ~10!

z850.21z~x210!,

with b50.12. Introducing cylindrical coordinatesr
5Ax21y2, u5arctan (y/x) and z we obtain the following
equations:

u8511
z sinu

r
1

b

2
sin 2u,

r 85z cosu1br sin2 u.

FIG. 2. Numerical simulations of system~11! for g50.10,
driven in y using e sin(vdt) with vd50.711. In~a!–~d!, e50.002,
0.005, 0.02, 0.05 and the region plotted in each panel is given
24.3<x<4.3 and25.8<y<5.1. The dark points show the Poin
caré section at zero drive phase. Fore50 ~data not shown!, the
points are distributed relatively evenly over the attractor. In~a!, e is
small and the points become concentrated nearC52p/2, but fre-
quent phase slip events are still evident. Ase increases, these even
become less frequent and eventually a phase locking region ap
~b!. For still largere, the region moves towardsC50 ~c! and be-
comes narrower~d!. For largerg ~data not shown!, d is larger and
the trapping region is correspondingly broader. When the driv
applied to thex variable~data not shown!, C'2p at the threshold
of locking, andC approaches2p/2 for largee.
05623
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The right-hand side of the phase equation contains
terms that cause its velocity to deviate from constant:S(t)
5z sinu/r and (b/2)sin 2u. Since the second term is period
in u and does not depend onz and r its contributions in the
following calculations are orders of magnitude smaller th
those of the first term, and we do not consider it further. T
variablez(t) is close to zero, except for a sequence of spik
that always occur nearu5u* '0.223p. During these
spikes the phase velocity increases causing phase jumps
an increase in the average angular frequency tov51.0329.

As explained in the previous section, we would like
define a new phase coordinatef in a neighborhood of the
attractor such thatf8511d(t) whered(t) is small on av-
erage and has zero mean. To do this we modelS(t) by a
sequence of constant pulsesp~u! around the phase valueu
5u* which are defined asp(u)5l if a<u,b and is
p(u)50 otherwise. We choose the valuesa50.18p, b
50.28p, andl51.74 so that the period of a phase variab
with phase velocity 11p(u) is the average period of th
Rössler systemT56.0838.

The new phase is now defined byf85u8/„11p(u)… and
f(0)5u(0)50, so thatf is periodic with period 2p1(a
2b)l/(l11)5T and satisfies

f85
11z sinu~f!

r „11p@u~f!#…
511d~r ,z,f!,

where d(r ,z,f) has zero mean and is large during only
small fraction of each cycle.

The phase perturbation termV is

V~f,t !52
1

r „11p@u~f!#…
sinu~f!sinvdt

and the function G~C! is computed by averaging
V(vdt/v,t), as in Eq.~3!. The exact result is complicated
but G(C)'2cos(C)/2r is a good approximation. Sincer is
not constant we use its average value in the approximat
below. Details of the calculation may be found at the a
thor’s web site@32#.

The value ofe necessary to phase lock the system wh
vd5v is less than 0.001. Since this value is an order
magnitude smaller than the coupling values considered
low phase diffusion has a negligible effect in this case. W
also estimate d(r ,z,f) by noting that f(nT)2f(0)
5*0

nTd(r ,z,f). Thus the averaged̄ can be estimated from
computing „f(nT)2f(0)…/(nT) over many orbits. The
maximum value ofd̄ with n51000 is of order 1024 and it
therefore has no significant influence. The phase diffus
coefficient computed as in@4,16# equalsDf58.2831026.

Interestinglyd(r ,z,f) is relatively large over most oscil
lations. However, computing the average ofd over one os-
cillation d̄(t)51/T*0

Td(r ,z,f)dt we find that d̄(nT) and

d̄„(n11)T… are strongly negatively correlated. Thus mo
forward jumps inf are followed by a backward jump whic
leads to the small value of the phase diffusion. Since we
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PHASE SYNCHRONIZATION OF CHAOTIC SYSTEMS . . . PHYSICAL REVIEW E 64 056234
use averages to estimate the influence ofd it follows that it
has a negligible influence despite its large values during e
oscillation.

The Arnold tongue is computed by finding the minim
values of the coupling strengthemin at which phase locking
occurs for a given value ofeD512vd /v, where v
52p/T. In particular we find the valueC0 at which G~C!
reaches its maximum if 12vd /v,0, or minimum if 1
2vd /v.0 so thatemin can be found from Eq.~8! as

emin5
vd /v21

G~C0!
,

where we have neglected the termd. The value ofC0 gives
the phase difference at which the phase locking first occ
The results of this approximation are compared with d
from numerical simulations in Fig. 3. We also find thatC0
'2p when eD.0 and C0'p when eD,0 which also
agrees well with the numerical simulations. We have a
repeated the analysis with different types of periodic driv
in Eq. ~10! and again obtained good agreement betw
theory and numerical simulations.

It is interesting to note that our predictions overestim
the value ofe at which phase locking first occurs by abo
10%. This is in part due to the use of the average valuer
in G(C)'2cos(C)/2r which makes our approximation o
G~C! independent ofr. The dynamics ofr, which are ignored
in this approximation, may play an important role in dete
mining phase locking as demonstrated in Sec. V. A m
careful analysis can improve these predictions, but is bey
the scope of this paper.

IV. APPLICATION TO EXPERIMENTS

To experimentally confirm the analysis above, we co
structed a phase-coherent chaotic electronic circuit mod
by the following equations:

x852a~x/201y/21z!,

FIG. 3. The 1:1 Arnold tongue for the Ro¨ssler equations. The
values e and eD are plotted on the vertical and horizontal ax
respectively. The lines represent the theoretical prediction, w
the dots are obtained from numerical simulations.
05623
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y852a~2x2gy!1e sinvd , ~11!

z852a@215~x23!u~x23!1z#,

whereu(x) is the step function anda5104 sets the experi-
mental time scale. System~11! can be viewed as a piecewis
linear approximation of the Ro¨ssler system discussed in th
previous section. It has been used in previous studies of
otic synchronization@33#. For experimental circuit details
see@34#.

The phase space of Eq.~11! is divided into two regions,
R15$(x,y,z)PR3:x,3% andR25R32R1 , in each of which
the equations are linear. By changing coordinates so tha
system is in normal form inR1 , the solutions of Eq.~11! in
R1 have the form „w(t),z(t)…5e(n1 iv)tw(0)1e2tz(0),
wherew(t)5x(t)1 iy(t). In R1 the solutions approach th
xy plane, which is invariant. Ifg.0.05, thenn.0 and the
origin is a spiral source in thexy plane. The parameterg
controls the instability of the origin sincen increases with
increasingg.

When an orbit entersR2 , it is lifted off the xy plane.
Shortly thereafter, the orbit is reinjected intoR1 closer to the
z axis, it quickly approaches thexy plane and, ifn.0, spirals
outwards until it reentersR2 and the process repeats. It ca
be shown that this behavior results in a Poincare´ return map
similar to the He´non map@35#.

We now define a phase coordinate as

f5~vr !21 arctan~y/x!, ~12!

wherer is the average attractor radius, which depends onn.
It follows that inR1 the setsI c5$f:f5c% form an invariant
family, f851, and“Xf is constant on eachI c . These ob-
servations permit a straightforward calculation ofG~C! as in
the previous section. Since all orbits eventually enter
regionR2 , this description of the phase is incomplete. Ho
ever, the size of the errors in this approximation depe
directly on the size and frequency of the excursions into
regionR2 . These in turn depend onn, which can be directly
controlled in experiments via the parameterg, which has a
similar effect on the dynamics as the parameterb in the
Rössler system. This allows us to adjust the magnitude od
in Eq. ~8!.

Numerical and physical experiments were conducted
changing the magnitude of the driving terme sin(vdt) in Eq.
~11!. Using Eq.~12! and the ideas of Sec. II, in normal co
ordinates we obtain

G~C!50.021 cos~vC!20.1666 sin~vC! ~13!

for g50.127 andr 55.12. Returning to the original coordi
nates of system~11!, we see that if the frequency of the driv
vd is larger than the intrinsic frequency of the circuitv0
@36#, i.e., Td,T and eD,0, we expect that the circuit firs
locks to the drive with a phase differenceC'2p/2 and that
C moves towards 0 ase is increased. Similarly, ifvd,v0
we expect that initiallyC'p/2, andC moves towards 0 as
e is increased. The theoretical analysis above yields g
qualitative ~Figs. 2 and 4! and quantitative agreement wit
the experimental data in the location, size, and shape of
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phase-locked region~Fig. 4! indicating that the approxima
tions in the phase descriptions were appropriate. We repe
the analysis with different types of driving and obtain
similar agreement between theoretical prediction and exp
mental results.

Note that the analytical predictions again overestimate
size of the coupling strengthe necessary for phase locking
as in the previous case. This is not surprising as the dyn
ics of systems~11! and ~10! are similar. Within the Arnold
tongue, the circuit oscillates chaotically, but remains ph
locked to the drive@37#. For largee, the drive may be so
strong that it imposes periodic dynamics on the circuit@38#.
This occurs at the top of Fig. 4~b!. We plot only the points
for the region of CPS beneath this.

V. DEPENDENCE OF THE PHASE SENSITIVITY OF f
ON R

One of the main assumptions in Sec. II was th
“Xfu(R,f) is approximately independent ofR. This assump-

FIG. 4. CPS phase locking results from experiment~symbols!
and theoretical analysis~lines! for system~11! for g50.127~a! and
g50.161~b!. The system is periodically driven iny with frequency
and amplitude as shown on the axes. The average frequencies
undriven system are 1122 Hz and 1113 Hz, corresponding tov0

50.705 and 0.699, in~a! and~b!. Triangles indicate when the sys
tem lies just at the threshold of slipping, while squares indic
parameters for whichuyu'uxu and C'6p/4, as indicated at the
top of ~a!. The wedge-shaped regions are analogous to Arn
tongues in the periodic case. The lines are calculated fromG~C! and
Eq. ~2!. Insets:G~C! vs C, as obtained from Eq.~13! for ~a!. For ~b!
the coefficients of the terms in Eq.~13! are 0.025 and20.1666.
05623
ted

ri-

e

-

e

t

tion implies that the first two terms in Eq.~7! are indepen-
dent ofR and the calculations can proceed in a way simi
to the periodic case.

This assumption is not necessarily satisfied. If the attr
tor A is chaotic, the sectionAù$f5c% wherecP@0,T) nec-
essarily consists of infinitely many points. It is possible th
“Xf varies by a large amount on each such section eve
d(R,f) is small. To illustrate how this may happen we fir
present a transparent, although artificial example, and u
similar idea to construct a modification of the Ro¨ssler equa-
tions exhibiting a phase-coherent attractor which is diffic
to phase lock.

Consider a planar vector field given in polar coordina
by X(r ,f)5(0,1/r ) in the annulusr P@1,2#,fP@0,2p#. The
isochrons are radial lines and the phase sensiti
“Xfu(r ,f)5(2cosf,sinf) is independent ofr. Let Y
5S(r ,f)X whereS:R3S1→R is a unimodal function with
a peak at 2(r 21)p and rapidly decaying to 1 away from thi
peak. The phase velocity of this system will be maximal
the angle (r 21)f for the circular orbit at distancer from the
origin and so“Yf depends onr. Applying the theory in Sec.
II formally we see that symmetry implies that if the period
orbit at r 51 is phase locked to a periodic drive with a pha
differenceC0 , then the periodic orbit of radiusr will phase
lock to the same drive with a phase differenceC062p(r
21). Consider now an attracting orbit whose radius var
slowly between 1 and 2 and such that its phase velocity
each point is the same as that ofY. Using the adiabatic
approximation as in@39,40# we find that at each moment thi
orbit will be locked to the drive, although the phase diffe
ence between the two will vary between 0 and 2p. Although
this example is artificial, it demonstrates that the depende
of “Xf on R may be an intrinsic feature of a system with
significant influence on its phase locking characteristics.

To show what consequences this dependence may
on phase locking letD(R,f)5“Xfu(R,f) and letD(R,f)
5DA(f)1DV(R,f). Here DA(f) is the R-independent
part ofD(R,f), which can be obtained by averagingD over
the attractor. The exact way of howDA(f) is obtained is
unimportant for the following argument. From Eq.~6! it fol-
lows that

C85e@D1DA~f!•p~ t !#1eDV~R,f!•p~ t !1d~R,f!,

where now the termeDV(R,f)•p(t) is no longer assumed to
be small compared to the term in the brackets. In particu
DV(R,f) varies by the same amount asD(R,f) as a func-
tion of R regardless of the choice ofDA(f). The approxi-
mate effect of this term on the phase over one oscillation
be calculated as in Eq.~9!

C~Td!2C~0!5eE
0

Td
DVS R,

T

Td
t1C D •p~ t !dt. ~14!

As the effect of the termeDV(R,f)•p(t) increases with
an increase in coupling strength it will not be necessa
possible to overcome it simply by increasing the coupli
strength as in Sec. II. In particular, ifDV varies by a large
amount from oscillation to oscillation or does not chan

the
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sign, it is possible that it will prevent phase locking com
pletely, regardless of the strength of the coupling. On
other hand, it is also possible that the average
eDV(R,f)•p(t) over a longer time intervalnTd , is small so
that DV has little effect on the phase difference and thus
arguments of Sec. II still apply. This is the case in Sec.
and IV. However, without more detailed information abo
the termDV(R,f) it is not possible to reach any of thes
conclusions even ifd(R,f) is small and the system is phas
coherent.

We illustrate this point using a modification of the Ro¨ssler
equations in their polar form~11! with b50.14. The equa-
tion for u8 is modified as follows:

u85S v1
z sinu

r
1

b

2
sin 2u Dg~r ,u!1e sinvdt, ~15!

where the terme sinvd t is a periodic drive and

g~r ,u!512sN„c~r 2a!p1u0 ,s2
…,

where N(m,s2)5exp@2(x2m)2/(2s2)# is an unnormalized
Gaussian-like function with a narrow peakm whose width is
determined bys2. The parametera57 is set to the approxi-
mate inner radius of thex2y projection of the Ro¨ssler at-
tractor. In the simulations we have chosenu050.7p, c
57/24, ands50.5.

The effect of the termg(r ,u) is to slow down the phase
variableu whenever it is close toc(r 2a)p1u0 . This slow-
ing occurs at different values ofu for different values ofr, as
in the illustrative example above. For our choice of para
eters, the slowdown occurs betweenu50.7p for an orbit at
the inner edge of the attractor andu51.12p for an orbit at
the outer edge of the attractor.

This modification of the Ro¨ssler equations is reminiscen
of the one introduced in@16# with one crucial difference. The
present change of coordinates increases the dependen
the phase dependent sensitivity“xu on r without signifi-
cantly altering the amount of phase diffusion. By contrast
@16# the Rössler equations were modified so as to incre
the amount of phase diffusion significantly. Figure 2 in@16#
illustrates that increasing phase diffusion makes phase
chronization more difficult. We illustrate how phase sy
chronization is similarly affected in the present case.

Since our modification does increase the phase diffus
of system~10! slightly, and our goal is to compare synchr
nization properties of systems with similar amounts of ph
diffusion, we use the unmodified Ro¨ssler system withb
50.16 for comparison. The phase diffusion coefficient c
be estimated as the slope of the varianceŠ„f(n)
2^f(n)&…2‹ @16,4#. The results are given in Fig. 5 and sho
that the slope of the variance as a function of the numbe
cycles is 2.0431023 in the first and 2.3731023 in the sec-
ond case. We also compare the variance ofu„(n11)T…
2u(nT), whereT is the average period of oscillation an
find a variance of 0.210 in the first and 0.303 in the seco
case. Thus the phase diffusion is stronger in the unmodi
Rössler system withb50.16.
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Despite the fact that the phase diffusion is smaller for
modified Rössler system, it is more difficult to phase lock,
shown in Fig. 6. Moreover, unlike the regular Ro¨ssler equa-
tions, infrequent phase slips can still be observed for v
strong coupling values.

Lastly we demonstrate that the precision of the synch
nization is very different in the two cases. As argued in S
II, an increase in the coupling strength will lead to a decre
in the size of the synchronization wedgeW if the term
DV(R,f) does not play a significant role. Since the size ofW
determines the amount by which the phase differenceuf
2fdu between the drive and response varies, we exp
tighter phase locking with an increase ine ~see Fig. 2!. How-
ever, if DV(R,f) cannot be ignored its the influence in
creases with the coupling strengthe, so that the setW may
not shrink, or may even become larger. This is demonstra
in Fig. 7 in which the standard deviation ofu(nTd) in the
phase locked region are compared. The results show tha
differenceuf2fdu stays large regardless of the value ofe in
the case of the modified Ro¨ssler equations. Repeating th
simulations with different parameter values and differe
types of periodic drives yields similar results.

FIG. 5. The time evolution of the varianceŠ(f(n)
2^f(n)&…2‹. The upper and lower line corresponds to the unmo
fied Rössler system withb50.16 ~slope of best linear fit
2.3731023!, and the modified Ro¨ssler system withb50.14 ~slope
of best linear fit 2.0431023!, respectively.

FIG. 6. The solid and open dots form the boundaries of the
Arnold tongues for the modified Ro¨ssler system withb50.14 and
the unmodified Ro¨ssler system withb50.16, respectively.
4-7
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KREŠIMIR JOSIĆ AND DOUGLAS J. MAR PHYSICAL REVIEW E64 056234
This observation has significant consequences. In syst
in which the termDV(R,f) is significant, phase locking ma
occur for sufficiently strong coupling values, however t
phase difference between the drive and response may
vary significantly. Moreover, an increase in the coupli
strength may not decrease the variation in the phase di
ence. Since the phase difference may vary by a large amo
phase synchronization may be impossible to detect in s
systems. This type of phase synchronization may also no
adequate in systems in which precise timing is necess
such as neural systems.

VI. CONCLUSION

Among different types of chaotic synchronization@41,42#
CPS is of particular interest since it occurs at coupl
strengths that are considerably smaller than those nece
for complete synchronization. Because the phase co
sponds to a nearly neutral direction within the attractor,
der certain conditions only a small driving force is requir
to control and entrain it. The dynamics in the radial dire
tions can be far more unstable and therefore more difficu
control and synchronize. Chaotic phase-coherent systems
exhibit a richness of behavior while their phase dynamic
still relatively tame, a property with important implication
for biological and other systems@6#.

We have shown that the ideas used to study phase loc
of periodic oscillators can be extended directly and natur
to the chaotic case. This approach provides a way of pred
ing how a phase-coherent system will phase lock to a p
odic driving signal. Systems~10! and ~11! were used as il-
lustrative examples because they are most commo
encountered in the literature on CPS, and the change of
ordinates necessary to computeG~C! can be found in a
straightforward manner. In the Appendix we show that
change of coordinates required in Sec. II exists for m
phase-coherent systems. Therefore these ideas can be a
more generally, although it may be necessary to employ

FIG. 7. The variance of the distributionu(nTd) in the region of
phase locking forv5vd . The rectangles and open dots repres
data from the unmodified and modified Ro¨ssler system respectively
The stronger dependence of the phase dependent sensitivity onR in
the case of the modified Ro¨ssler system leads to less precise ph
locking at all coupling values.
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merical estimates to find an optimal coordinate change
particular, systems for which several phase variables can
defined may be also considered using the same techni
@24#.

The main difference between CPS and phase locking
periodic systems is that the phase sensitivity cannot be
sumed to be a function of the phase only. The stronger
dependence on other variables, the less the system will
have like a periodic system when driven by a periodic sign
As shown in Sec. V this means that it may not be possible
synchronize some phase-coherent systems, even if they
hibit very small phase diffusion. Moreover, even if pha
synchronization is possible, in such cases the phase di
ence between the drive and response may vary by an a
trary amount regardless of the amplitude of the drive.

Let us also note that this view of chaotic synchronizati
is related to the analysis of randomly or chaotically driv
periodic oscillators@39,43#. We may think of the term
d(R,f) as arising from the chaotic or random part of a s
nal acting on a periodic oscillator since the two situations
equivalent from a mathematical perspective. In cases wh
d(R,f) varies slowly compared tof, the adiabatic approxi-
mations used in@39# still apply. Following the arguments
given in @20# it is also straightforward to extend this ap
proach to the case of coupled chaotic systems. This case
be examined further elsewhere.

In view of these arguments, we expect that our appro
has applications beyond CPS. If there exists a change
coordinates in the neighborhood of a chaotic attractor s
that in these coordinates certain directions are nearly neu
we expect the system to be more malleable along these
rections. Thus some coordinates may be easier to sync
nize than others and partial synchrony of such variables m
be achieved before full synchronization of the system occ
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APPENDIX A: THE R, f COORDINATE CHANGE

We provide sufficient conditions for the existence of c
ordinatesR andf in which the equations of motion take th
form ~4! and ~5!.

Theorem 1.Let the systemX85 f (X) have a compact
attractorA on which aT-periodic phase coordinateF is de-
fined, and assume thatf is differentiable. Moreover, assum
that the return timeTR0

to the sectionF50 of any point

(R,F)5(R0,0) onA satisfies

uT2TR0
u,h!1 ~A1!

and thatF8.0. Then for anye.0 there exist a coordinate
changeF→f in a neighborhood ofA such thatf is T peri-
odic and

f8511d~R,f!,

t

e
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whereudu,h1e, except forf in a set of measure less tha
h.

Note that the different approaches for defining the ph
of a chaotic system@4,24,25# all result in a phase that is
increasing in time. Theorem~A1! states that there exists
change of coordinates tof for any such phase, and thus, u
to discrepancies of size at mosth, all these definitions are
equivalent, as long as there are no resonant modes.

Before we give an outline of the proof it is instructive
consider the case of a system with a limit cycle with peri
T. We can always define a phaseF that satisfies

F8511D~F!,

where F is T periodic andD(F).21 and *0
TD(F)dF

50. We can introduce a new phase coordinate

f5F2E
0

F D~s!

11D~s!
ds,

wheref is alsoT periodic. A direct computation shows tha
f851. This change of coordinates stretches the parts
which the phase moves quickly and compresses the p
where it moves slowly, so that its motion becomes unifor

The proof of the general case follows the same idea. D
to Eq. ~A1! and the assumption thatF8.0 we can write
F8511D(R,F) whereD(R,F),1 and

E
0

T

D„R~ t !,F~ t !…dt,h ~A2!

along any orbit in a neighborhood ofA. Moreover, we can
express theR(t) part of a solution with initial condition
„R(0),F(0)…5(R0,0) as a function ofF, i.e, we can define
R(F,R0) uniquely forFP@0,T) andR0 in a neighborhood
of Aù$F50%.

For any orbit in a neighborhood ofA the function
D„R(F,R0),F…5D(R0 ,F) can be approximated by
D̂(R0 ,F) so that *0

TD̂(R0 ,F)dF50 and if R1 is the R
coordinate of the first return to the sectionF50 of the orbit
starting at (R0,0) thenD̂ satisfiesD̂(R0 ,T)5D̂(R1,0) and is
differentiable at (R0 ,T)5(R1,0). Due to Eq.~A2! for any
given e.0 we can also chooseD̂ to satisfy

UD~R0 ,F!2D̂~R0 ,F!
11D~R0 ,F!

11D̂~R0 ,F!
U,h1e ~A3!
s,

I.
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for all FP@0,T) outside of a set of measureh. Furthermore,
by differentiable dependence on initial conditions, the fun
tion D̂ can be chosen to be differentiable. We can now
troduce a new coordinate

f5F2E
0

F D̂~R0 ,s!

11D̂~R0 ,s!
ds.

By our choice ofD̂ this is a smooth change of coordinate
andf8511d(R,F) whered is the quantity on the left side
of inequality ~A3!. This proves the assertion.

There are several important properties of this change
coordinates. First, note that it is performed along every
riod of F. In particular, the value ofhR0

5uT2TR0
u deter-

mines the size ofd(R,F) along one period ofF for the orbit
starting at (R0,0). Therefore, the distribution ofhR0

is a
good indication of howd(R,F) behaves over many orbits.

It is also worth noting that ifF85O(1) in a neighbor-
hood ofA then condition~A1! is equivalent to the existence
of a timeT such that

uF~0!2F~T!u,Kh

for K5O(1) and all orbits in a neighborhood ofA. Thus it is
a matter of choice whether to look at the space or time Po
caré section to determine whether the attractor is pha
coherent.

The choice of the approximating functionD̂(R0 ,T) is
also somewhat arbitrary. For instance it is possible to cho
D̂(R0 ,F)5D(R0 ,F) for all F outside of a set of small
measure. On the other hand we can choose the function
that D̂(R0 ,F)2D(R0 ,F)Þ0 but remains small along the
entire orbit. As discussed in Sec. II this does not have a
significant consequences if we only consider the coarse
havior, but a particular change of coordinates might be p
ferred if a more detailed study is required.

Lastly, let us remark even if the described change of
ordinates exists only on part of the attractor, some of
ideas developed in this paper may still be applicable. If
attractor contains a fixed point, as for instance the Lore
attractor, then condition~A1! cannot be satisfied and
change of coordinates of the type discussed above does
exist. However, it is possible to find such a coordina
change along orbits or portions of orbits that stay uniform
bounded away from the fixed point, which may lead to p
tial phase coherence and phase locking as in@29#.
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