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Phase synchronization of chaotic systems with small phase diffusion
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The geometric theory of phase locking between periodic oscillators is extended to phase coherent chaotic
systems. This approach explains the qualitative features of phase locked chaotic systems and provides an
analytical tool for a quantitative description of the phase locked states. Moreover, this geometric viewpoint
allows us to identify obstructions to phase locking even in systems with negligible phase diffusion, and to
provide sufficient conditions for phase locking to occur. We apply these techniques toghleRzystem and
a phase coherent electronic circuit and find that numerical results and experiments agree well with theoretical

predictions.
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[. INTRODUCTION and we address the questions when and how it can be ex-

tended to systems with stable, phase-coherent chaotic attrac-

While the study of phase locking between periodicallytors.
oscillating systems dates back to Huygéhkthe investiga- In Sec. Il we give the mathematical details of how the
tion of phase locking between chaotic systems has a morgeometric theory of periodic phase locking describefRio|
recent history. Its occurrence was noted[#+4] and the can be extended to chaotic oscillators. These ideas are ap-
phenomenon has since been observed in such diverse syslied to the Rssler equationgSec. ) and to an electronic
tems as electrically coupled neurdms6], spatially extended circuit based on the partially linear Bsler equationgSec.
ecological systemfr], earthquake mode[8], a plasma dis- |Vv), and the theoretical predictions are verified numerically
charge tubd9], and its potential role in brain functions has and experimentally. In Sec. V we further discuss sufficient
been recognizefil0,11]. conditions under which a phase-coherent attractor can be

Although much work has been done on detecting and anghase locked to a periodic drive, and demonstrate that the
lyzing chaotic phase synchronizatid€P9, the phenom- amount of phase diffusion and the geometry of the attractor
enon is still not completely understood and predictive methare equally important. Sufficient conditions under which a

ods are still lacking. In the chaotic systems studief#ifitis  chaotic attractor is phase-coherent are discussed in the Ap-
possible to define a phase variable which varies periodicallpendix.

up to a small chaotic term. If this chaotic term can be treated
as white noise then the theory developed12] is appli-
cable. A similar approach is con_sidered_[ilr8,14] where the Il. A DESCRIPTION OF CPS USING ISOCHRONS
phase is modeled by a stochastically driven overdamped par-
ticle. Since periodic orbits form a skeleton of a chaotic at- A frequent goal in science and engineering is to predict
tractor, it was argued ifil5] that CPS can be described in how the behavior of a periodically oscillating system
terms of the phase locking properties of these periodic orbitsshanges when it is subject to an outside perturbdtlgnl9.
The detailed structure of attractors in the CPS regime wa#deally such predictions should be based only on information
analyzed further if16]. about the unperturbed system, and the type of perturbation

Many of these approaches describe behavior that agre@sting upon it, thus avoiding the work of performing numer-
well with that observed in systems exhibiting CPS. Howeverous experiments. In this section we describe how this can be
predictive methods for computing when and how CPS occurgchieved in the case of a small, periodic perturbation acting
have not been discussed in detail. Moreover, the questioan a chaotically oscillating system.
whether CPS is possible in all phase coherent systems has, to We first review the theory for a periodically perturbed
our knowledge, not been addressed. nonlinear oscillator following the approach [i20]. Assume

In the following we describe such predictive methodsthat the systenX’=F(X) has an exponentially stable limit
based only on information about the unperturbed system, theycle p of periodT. It is possible to find coordinates, R)
type of driving signal and the nature of the coupling. Wein a tubular neighborhool of p such that the phasg s the
give a geometrical description of how CPS occurs, and shovangular distance along, R measures the radial distance
how to predict the driving strength necessary for CPS, thérom p, and ¢’ =d¢/dt=1.
phase difference between the drive and response in the CPS The level sets ofp are calledisochronsand define codi-
regime, and by how much this phase difference varies. Moremension one manifolds that foliaté. Every isochron inter-
over, this approach also identifies a geometric obstruction teectsp in a single pointq,, called thebasepointof the
CPS in phase coherent systems, which may be present ev&ochron. Letp, be the flow ofX’'=F(X). There existC,k
if the phase diffusion is negligible. This theory is well devel- >0 such that for any poir on an isochron with basepoint
oped in the case of systems with stable limit cy¢lE8-20  q, we have |¢i(p)— ¢t(q¢)|sCefkt. Therefore the
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asymptotic behavior of all points on an isochron is the same It is not always clear when such a change of coordinates
as that of its basepoint. exists. However, given a system of differential equations, or

If the system is subject to a small perturbatigo(t) of  a timeseries it is frequently possible to define a phhsnd
period T4 so thatX’ =F(X)+ ep(t), the theory of invariant a natural period” such thaf®(T)—®(0)|< »<1. This can
manifolds[21] implies that the perturbed system possessebe done using the Hilbert transform, or other approaches
an attracting limit cyclep, which isO(¢€) close top. A direct  [23-25. In the Appendix we show that if in additio® is

calculation shows that strictly increasing, then there exists a change of coordinates
for which Egs.(4) and(5) hold.
¢'=1+€Vxdl, 4 P(1) The dispersion of the phase due to the teiis frequently
5 referred to agphase diffusiorsince the effect is similar to
=1+ EVX¢|p<¢>'p(t)+O(E ) that of a random perturbation of a periodically forced phase
def oscillator[12]. Let us emphasize that does not necessarily
=1+ €eQ(p,t)+O(€d), behave likes-function correlated white noise. The correla-

tion (5(t), 8(t+ 7)), may, in general, decay relatively slowly
where Vx|, (4 is the gradient of¢(X) evaluated at the with 7, and thus the theory developed|ib2] is not neces-
point p.(¢) of the perturbed orbit and the first equality fol- sarily Va|l'd fC?I’ CPS. In t_he fO”OWI.ng we investigate phase
lows from the O(e) closeness ofy and p,. Since Vyé synchronization whend is small in the sense described
points along the direction of fastest increasegofit can be above. In particular, it is not necessary that the system is
interpreted as the phase-dependent sensitivity,oénd so chaotic, as long as there are coordinates in which the system
Q(¢,t)=Vx¢|p(¢)-p(t) measures the influence of the per- IS 9iven by Eqs(4) and(5). The coord|.nate$R, ¢) are not
turbation on the phase. uniquely defined but may be chosen in any way such éhat

Defining the phase difference betwepft) and ¢ asw  Satisfies the conditions given above. _
= ¢—(TIT)t and lettingeA=1—T/T,, we obtain to sec- As in the periodic case, we want to predict the response of
ond order ine the phase to a small periodic perturbation by analyzing the

systemX’=F(X)+ ep(t). We assume that the original sys-

tem is stable to small perturbations in the sense that the per-
}- (1) turbed system has an attractdy which is close to the at-

tractor of the unperturbed system in the sense that a typical

Averaging this equation over one period of the drive gives orbit on A has a counterpart oA, and the two stay close
over one oscillation. In particular, we do not assume that the

V'=¢

AQT N4
+ T—dt-l- 't

V'=€eA+T(WV)], (20 dynamics on the two attractors is conjugate as, for instance,
. . one of A, andA could be a chaotic and the other a periodic
where the functiod’(V) is the average attractor.
e (T Since §(R, ¢) is continuous in both arguments, it will
F(\P)=(1/Td)J Q| —t+WV,t|dt. (3)  remain small when evaluated along an orbit of the new at-
0 Tq tractor A.. The same calculations as in the periodic case
If this equation has a stable fixed poiftyy, then the phase yield
approaches the solutiopp(t)=W,+(T/T4)t, so that ¢(t '=1+ 8(R. &)+ eV o(t 6
+T4)=(t) and the system is phase locked with the drive ¢ (R.¢) x#le-PO), ®
with a phase difference o¥. whereVy | 4 is the gradient ofp(X) at a point(R, ¢).

To extend these ideas to the case of chaotic systems we we will assume thatVye| 4 satisfies Vxél(r,.0)
assume thaX'’'=F(X) possesses a chaotic attracorand =Vx¢|(R2,¢)+O(€) for all pairs of points Ry, ®),(Ry, ®)

that there exist coordinate®, ¢) in a neighborhood oR " P ohood oA so that the phase dependent sensitiv-

such that ity is constant as a function & up to terms of ordee. This
R =F(R,®), (4) is a strong assumption which is approximately satisfied for
the systems described in Secs. Il and IV, and whose neces-
¢'=1+8(R, o), (50  sity will be discussed further in Sec. V.

Using the same definitions as in the periodic case, we now
where ¢ is T periodic. We require that(R,¢) is O(7) find up to second order ia:
where n<<1 except possibly forp in a set of total length
O(#) on which §(R, ¢) can beO(1), or, equivalently, that
Je8(R,#)dep=0(7) for any orbit onA. It follows that ¢
completes one period in tim&+O(#n). Moreover, two
points R;,¢) and R,,¢) sharing the same initial phase  Again, we proceed by averaging the term in the brackets
will remain close in phase for times at lea®{1/7) before  of Eq. (7). Following the usual proof of the Averaging Theo-
they are separated by the effects of the tétritherefore the rem[26] we introduce the near identity transformation
level sets of¢p form approximate isochrons and the system ~ ~
may be callecbhase-cohereni22]. V=V¥+eu(V,t),

V'=¢ + (R, ). 7

AQT‘If
T
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¥ = e[A+T'(P)]

FIG. 1. Schematic representation of Eg) for ¥'. Once in the
interval W, the relative phas& cannot escape. The value ¥,
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that we replace’ by & in Eq. (8) and there exists a trapping
region W for the phase differenc@. Then any solution of
the unaveraged equation starting/itwill stay in this wedge

for times up toO(1/e). Therefore we can string together
infinitely many intervals over which this solution is valid to
show thatW is a trapping region of the unaveraged equation
for all time. Although the solutions of the averaged and un-
averaged equations may not remain close, we can still con-
clude that both will remain trapped aroutt, for all time. It

is therefore a matter of convenience whether we choose to
averages(R, ¢) or not. Since averaging(R, ¢) is justified,

estimates the phase difference between the drive and the systemverage quantities such as the phase diffusion constant are

response, and the size @ estimates the variation in this differ-
ence.

whereu(¥,t)=Q(¥,t)-T'(¥) andI'(¥) is defined as in
Eq. (2). It follows that up to second order i

T’ = A+T(V)]+3(R, ), (8)

where3(R, ¢) = 8(R, ¢) — €5(R, $) dzu(¥,t). If 5is small
for all values of¢ then Eq.(8) is of form (2), with a small

perturbationd whose exact nature depends on the drive
system.

Since both¥ and¥ and 5 and$ are uniformly close, we
will drop the tildes from now on. Define the region

def
W={¥:min 5<e[A+T(¥)]<maxd}.

For e sufficiently large W is a proper subset ¢D,T4]. If ¥,
is a stable fixed point of Eq2) andW the component oV
containing¥, a Lyapunov function argument shows tht
is a stable inflowing region for Eq8). This is shown sche-
matically in Fig. 1.

A similar argument holds iB(R, ¢) is of O(1) during a
time of O(#) in the cycle. If =0(e€) then for any initial
relative phaseW¥(0) in Eqg. (8) we have ¥(t)=V¥(0)
+0(e) for O<t=<T,. Therefore during one period of the
drive I'(W(t))=I'(¥(0))+0O(e) andV advances by

W(Tq)—W(0)= ffon[F(‘I’(O))ﬂL 8(R,¢)1dt+O(€?),
©)

and for sufficiently largee points starting in the basin of
attraction of a stable fixed poin¥, of Eq. (2) are still at-
tracted to the vicinity of¥' in Eq. (8).

Note that in obtaining Eq8) we have only averaged the
periodic term(), but noté. Alternatively we can also average
S(R, ) over a timenTy<1l/e to obtain W' =¢e[A+T'(V)

+46(t)] up to second order ine where E(t)
=1/(an)f3Td[5(R(t),¢(t))]dt. Since 6(R, ¢) is not peri-

n

meaningful in estimating the size éfeven whens is differ-
ent from white noise, as long as the average is approached
quickly compared to H

For periodic systems the transition to phase locking oc-
curs as follows: Az increases, the graph efA+T1"(W)] is
dilated vertically(see Fig. 1 System(2) nears a saddle-node
bifurcation and¥ spends more time in the vicinity of the
incipient bifurcation point. At a critical value of, Eq. (2)
undergoes a saddle-node bifurcation, giving birth to a stable
fixed pointW¥,. At this point the system enters the 1:1 Ar-
nold tongue and phase locks to the drive. The transition to
CPS in the perturbed systef®) is similar, but more gradual.
Even as the saddle-node bifurcation gives rise to a stable
point ¥, of Eq. (2), the termé in Eq. (7) may cause the
phase to slip out of a neighborhood ¥f,. If T4>T, then
e€A>0 and the graph df (W) is shifted upwards. In this case
o typically causes a forward slip in the phaseT}f<T, the
opposite is true. As grows, these slips become rarer and
disappear altogether with the creation of a trapping refibn
for the phase. If max5 and min 6 remain approximately
constant ase is increased, then the regioW moves and
becomes narrower, and phase locking typically becomes
tighter. This process is illustrated in Secs. Il and IV, and in
Fig. 2.

It will be shown in Sec. V that it is frequently important
to assume tha y ¢|(r, 4 iS approximately constant iR. We
also note that the existence of the regis a sufficient, but
not necessary condition for CPS. The attraction to an ap-
proximately phase locked state may become stronger than
the phase diffusion even before the coupling is sufficiently
strong for the regiorw to appear. This depends on the par-
ticular form of the terms, and without further assumptions it
is difficult to say more.

The termé(R, ¢) is adeterministicnoise term. More in-
formation about this term leads to additional information
about the phase locked state[24,2§ it is argued tha® can
typically be approximated by fractional Brownian motion.
Intermittent spikes in5 may lead to intermittent phase slips
[29]. Statistical information about such spikes yields direct
information about the frequency of phase slips in such sys-
tems[30]. Note that we have only assumed thais small
and not that it is modeled well by any particular stochastic

odic in time, the solution of this equation will in general be aprocess.
good approximation to the unaveraged solution only for In this argument it was assumed that the periodic driving

times up to order ¥[27], while the approach outlined above

has only a small effect on the attractdrand thate is small

gives results valid for all time. However, we can still recoverenough to justify averaging. Howeves,needs to be suffi-
the conclusions of the above argument as follows: Supposeently large for a phase trapping regigto appear. These
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The right-hand side of the phase equation contains two
terms that cause its velocity to deviate from const&(t)
=zsind/r and (b/2)sin 29. Since the second term is periodic
in 6 and does not depend @aandr its contributions in the
following calculations are orders of magnitude smaller than
those of the first term, and we do not consider it further. The
variablez(t) is close to zero, except for a sequence of spikes
that always occur neaW= 6*~0.22< 7. During these
spikes the phase velocity increases causing phase jumps and
an increase in the average angular frequency $01.0329.

(©) ) : As explained in the previous section, we would like to
\ = define a new phase coordinagein a neighborhood of the
attractor such tha#’' =1+ &(t) where §(t) is small on av-
erage and has zero mean. To do this we m@&{¢) by a
sequence of constant pulse$t) around the phase valug
=6* which are defined asr(#)=\ if a<#<pB and is
w(0)=0 otherwise. We choose the values=0.187,
=0.287, and\ =1.74 so that the period of a phase variable
with phase velocity * 7(6) is the average period of the
Rossler systenT=6.0838.
FIG. 2. Numerical simulations of systerfil) for y=0.10, The new phase is now defined By = 6'/(1+ m(6)) and

driven iny using e sin(wqt) with wq=0.711. In(a)—(d), e=0.002, #(0)=6(0)=0, so thate is periodic with period 2+ (a
0.005, 0.02, 0.05 and the region plotted in each panel is given by BN (A +1)=T and satisfies

—4.3<x=<4.3 and—5.8<y=<5.1. The dark points show the Poin-

care section at zero drive phase. Fer=0 (data not showy the

points are distributed relatively evenly over the attractorane is , 1+zsino(¢)

small and the points become concentrated near— /2, but fre- ¢'= r(lT[&(dﬂ]) =1+4(r,z,¢),
quent phase slip events are still evident.éAscreases, these events

become less frequent and eventually a phase locking region appears . .
(b). For still largere, the region moves toward¥ =0 (c) and be-  Where 8(r,z,¢) has zero mean and is large during only a
comes narrowetd). For largery (data not showp § is larger and small fraction of each c_ycle. _

the trapping region is correspondingly broader. When the drive is The phase perturbation terfd is

applied to thex variable(data not shown ¥ ~ — 7 at the threshold

of locking, and¥ approaches-#/2 for largee.

(d)

1
Q(e)=—
two opposing conditions oamay not always be compatible. rd+alo(¢4)])
It is therefore necessary to treat phase-coherent attractors
case by case. Fortunately perturbation results often hold forand the function I'(W) is computed by averaging
wide range of values of, and we therefore expect that these Q) (wq4t/w,t), as in Eq.(3). The exact result is complicated,

Siné( ¢)sinwgt

ideas are widely applicable. butT'(¥)~ —cos@)/2r is a good approximation. Sinceis
not constant we use its average value in the approximations
ll. THE RO SSLER SYSTEM below. Details of the calculation may be found at the au-
. thor's web sitg32].
In this section we consider the Bsler system with a pe-  The value ofe necessary to phase lock the system when
riodic drive in thex variable[31] wg=w is less than 0.001. Since this value is an order of

magnitude smaller than the coupling values considered be-
low phase diffusion has a negligible effect in this case. We
also estimate 6(r,z,¢) by noting that ¢(nT)— ¢(0)
zngé(r,z,qS). Thus the averagé can be estimated from
computing (¢(nT)—¢(0))/(nT) over many orbits. The
maximum value ofs with n=1000 is of order 10* and it

with b=0.12. Introducing cylindrical coordinatesr therefore has no significant influence. The phase diffusion

= JxZ+y?, f=arctany/x) and z we obtain the following ~coefficient computed as i,16] equalsD ,=8.28<10"°.

X'=—y—z+eSsinwgt,
y'=x+by, (10

z'=0.2+z(x—10),

equations: Interestinglys(r,z, ) is relatively large over most oscil-
lations. However, computing the average dbver one os-
go14 sing . Esm 0 cillation 8(t)=1/Tf{8(r,z,¢)dt we find that §(nT) and
r 2 ' 8((n+1)T) are strongly negatively correlated. Thus most
forward jumps in¢ are followed by a backward jump which
r’'=zcosé+brsir? 6. leads to the small value of the phase diffusion. Since we can
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coupling strength y' - _ a(—X— ,yy)+ ESinwd , (11)
0.1} () Z'=—a[—15x—3)0(x—3)+2z],

where 6(x) is the step function and=10* sets the experi-
mental time scale. Syste(fil) can be viewed as a piecewise
linear approximation of the Rsler system discussed in the
previous section. It has been used in previous studies of cha-
otic synchronizatio33]. For experimental circuit details,
see[34].

The phase space of E(L1) is divided into two regions,
R;={(x,y,2) e R®:x<3} andR,=R3—R;, in each of which
frequency ratio the equations are linear. By changing coordinates so that the
-0.004 -0.002 0.002 0.004 system is in normal form iR, , the solutions of Eq(11) in

FIG. 3. The 1:1 Arnold tongue for the Rsler equations. The R, have the form (w(t),z(t))=e(”*'“’)fw(0)+e 2(0),
values e and eA are plotted on the vertical and horizontal axis, Wherew(t):_x(t),"' '_y(t)'. In R, the solutions approach the
respectively. The lines represent the theoretical prediction, whilg?Y Plane, which is invariant. Ify>0.05, thenv>0 and the
the dots are obtained from numerical simulations. origin is a spiral source in th&y plane. The parametey

controls the instability of the origin since increases with
use averages to estimate the influence ifffollows that it ~ NCreasingy. . o
has a negligible influence despite its large values during each When an orbit enter®,, it is lifted off the xy plane.
oscillation. Shortly thereafter, the orbit is reinjected irfRy closer to the

The Arnold tongue is computed by finding the minimal Z@xis, it quickly approaches they plane and, ifv>0, spirals
values of the coupling strengi,,, at which phase locking outwards until it _reenterRlz and the process repeats. It can
occurs for a given value ofeA=1-wy/w, where w b_e ;hown that }hls behavior results in a Poinagatern map
—27/T. In particular we find the valud, at which['(¥)  Similar to the Heon map[35].
reaches its maximum if 4 wq/w<0, or minimum if 1 We now define a phase coordinate as
—wy/w>0 so thaten,;, can be found from Eq8) as

¢=(wr) Larctarfy/x), (12)
wglo—1 wherer is the average attractor radius, which depends.on
€min~™ L(V,) ° It follows that inR; the setd ;={¢: ¢=c} form an invariant

family, ¢'=1, andVy¢ is constant on each.. These ob-

where we have neglected the tefiriThe value of¥, gives servations permit a straightforward calculationl@fV’) as in

the phase difference at which the phase locking first occuré.he previous section. Since all orbits eventually enter the

The results of this approximation are compared with datd€9/onRz, th's description of t_he p_hase IS m_com_plete. How-
from numerical simulations in Fig. 3. We also find thi ever, the size of the errors in this approximation depends

~—7 when eA>0 and Wo~= when eA<0 which also directly on the size and frequency of the excursions into the

agrees well with the numerical simulations. We have aIsJeg'onR2' These In twrn depend an which can k_)e directly
repeated the analysis with different types of periodic drivingc.on.trmIed In experiments via the paramet)erwhlch_ has a
in Eq. (10) and again obtained good agreement betwee imilar effect on th_e dynamics as the paramebenj the
theory and numerical simulations. _ ossler system. This allows us to adjust the magnitudé of
It is interesting to note that our predictions overestimate” E9- (8)'. . .

Numerical and physical experiments were conducted by

the value ofe at which phase locking first occurs by about changing the magnitude of the driving teesin(wt) in Eq
0 . s Wy .
10%. This is in part due to the use of the average value of (11). Using Eq.(12) and the ideas of Sec. Il, in normal co-

in I'(W)~ —cos@)/2r which makes our approximation of dinat bia
I'(W) independent of. The dynamics of, which are ignored ordinates we obtain

in this approximation, may play an important role in deter- I'(¥)=0.021 cosw¥) —0.1666 siiwP) (13)
mining phase locking as demonstrated in Sec. V. A more ' '

careful analysis can improve these predictions, but is beyongbr ,=0.127 andr =5.12. Returning to the original coordi-

the scope of this paper. nates of systerfiL1), we see that if the frequency of the drive
wy is larger than the intrinsic frequency of the circuit
IV. APPLICATION TO EXPERIMENTS [36], ie., Ta<T and eA<0, we expect that the circuit first

_ _ _ locks to the drive with a phase differende~ — 7/2 and that
To experimentally confirm the analysis above, we con-I» moves towards 0 as is increased. Similarly, ifog<wg
structed a phase-coherent chaotic electronic circuit modelege expect that initially¥ ~ /2, and¥ moves towards 0 as

by the following equations: e is increased. The theoretical analysis above yields good
qualitative (Figs. 2 and # and quantitative agreement with
x'=—a(x/120+y/2+z), the experimental data in the location, size, and shape of the
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0.3

tion implies that the first two terms in E¢7) are indepen-
dent of R and the calculations can proceed in a way similar
to the periodic case.

This assumption is not necessarily satisfied. If the attrac-
tor A is chaotic, the sectioAN{¢=c} wherece[0,T) nec-
essarily consists of infinitely many points. It is possible that
V¢ varies by a large amount on each such section even if
B O(R, ) is small. To illustrate how this may happen we first
present a transparent, although artificial example, and use a
similar idea to construct a modification of the $3ter equa-
tions exhibiting a phase-coherent attractor which is difficult
to phase lock.

Consider a planar vector field given in polar coordinates
by X(r,#)=(0,1k) in the annulus €[1,2],¢$ [ 0,27]. The
isochrons are radial lines and the phase sensitivity
u Vyd|i.4=(—coseg,sing) is independent ofr. Let Y
=3(r,$)X whereS:RxX S'—R is a unimodal function with
a peak at 2(— 1)7 and rapidly decaying to 1 away from this
peak. The phase velocity of this system will be maximal at
the angle (—1) ¢ for the circular orbit at distancefrom the
origin and soVy ¢ depends om. Applying the theory in Sec.

Il formally we see that symmetry implies that if the periodic
orbit atr =1 is phase locked to a periodic drive with a phase
differenceVq, then the periodic orbit of radiuswill phase
lock to the same drive with a phase differerig =2 (r
—1). Consider now an attracting orbit whose radius varies
slowly between 1 and 2 and such that its phase velocity at
each point is the same as that %f Using the adiabatic

=0.161(b). The system is periodically driven inwith frequenc approx!matlon as 39,40 We. find that at each moment .thls
gnd amplitude as s)r/mwn on Ft)he axes. ')I/'he averL:ge freqt?encie)s/ of tﬂéb't will be locked to the drive, although the phase differ-
undriven system are 1122 Hz and 1113 Hz, correspondinggto  €C€ betweer_1 the _t\_N(_) W'_” vary between 0 and Although
=0.705 and 0.699, ia) and (b). Triangles indicate when the sys- tNiS example is artificial, it demonstrates that the dependence
tem lies just at the threshold of slipping, while squares indicate®f Vx# on R may be an intrinsic feature of a system with a
parameters for whicty|~|x| and ¥~ +x/4, as indicated at the Significant influence on its phase locking characteristics.
top of (a). The wedge-shaped regions are analogous to Armold TO show what consequences this dependence may have
tongues in the periodic case. The lines are calculated fiol) and ~ on phase locking leD(R,$) =Vx¢|r 4 and letD(R,¢)
Eg.(2). InsetsT (V) vs ¥, as obtained from Ed13) for (a). For (b) =Da(¢) +Dy(R,¢). Here Da(¢) is the R-independent
the coefficients of the terms in E(L3) are 0.025 and-0.1666. part of D(R, ¢), which can be obtained by averagiBgover

the attractor. The exact way of hol,(¢) is obtained is

phase-locked regiofFig. 4) indicating that the approxima- unimportant for the following argument. From E®) it fol-
tions in the phase descriptions were appropriate. We repeatdaws that
the analysis with different types of driving and obtained
similar agreement between theoretical prediction and experi- V' =€[A+Da(#)-p(t)]+eDy(R,¢)-p(t) + (R, ),
mental results. )

Note that the analytical predictions again overestimate th&vhere now the ternaD (R, ¢) - p(t) is no longer assumed to
size of the coupling strength necessary for phase locking, e small compared to the term in the brackets. In particular,
as in the previous case. This is not surprising as the dynanfv(R, ¢) varies by the same amount B§R, ¢) as a func-
ics of systemg11) and (10) are similar. Within the Arnold tion of R regardless of the choice @ A(¢). The approxi-
tongue, the circuit oscillates chaotically, but remains phasénate effect of this term on the phase over one oscillation can
locked to the drive[37]. For largee, the drive may be so be calculated as in E¢9)
strong that it imposes periodic dynamics on the cir€38].

0.2

0.2

—_

>

N’
W

0- 1 1 0.0

-0.2

0.0
0.3

0.2

€ (V)

0- 1 1 0.0

0.0

FIG. 4. CPS phase locking results from experiméymbols
and theoretical analysitines) for system(11) for y=0.127(a) and

This occurs at the top of Fig.(d). We plot only the points W(T.) =W (0)= deD R lt+\lf o(hdt. (14
for the region of CPS beneath this. (Ta) (0)=e I Ty p(dt. (14
V. DEPENDENCE OF THE PHASE SENSITIVITY OF ¢ As the effect of the termeDy/(R, ¢) - p(t) increases with
ON R an increase in coupling strength it will not be necessarily
possible to overcome it simply by increasing the coupling
One of the main assumptions in Sec. Il was thatstrength as in Sec. Il. In particular, i, varies by a large

Vx| (r 4 is approximately independent &. This assump- amount from oscillation to oscillation or does not change
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sign, it is possible that it will prevent phase locking com-
pletely, regardless of the strength of the coupling. On the
other hand, it is also possible that the average of 1
eDy(R, ¢) - p(t) over a longer time intervai T, is small so
thatDy has little effect on the phase difference and thus the
arguments of Sec. Il still apply. This is the case in Sec. lll var. ;5 ¢
and IV. However, without more detailed information about

i
N

0.8

the termDy(R, ¢) it is not possible to reach any of these 0.4
conclusions even (R, ¢) is small and the system is phase- 0.2
coherent.
We illustrate this point using a modification of the $&ter 0
equations in their polar fornil1) with b=0.14. The equa- 0 100 200 300 400 500

i . \p cycle number
tion for 8’ is modified as follows:

FIG. 5. The time evolution of the variancg(¢(n)
—(p(n)))?). The upper and lower line corresponds to the unmodi-
fied Rassler system withb=0.16 (slope of best linear fit
2.37x107%), and the modified Rssler system witth=0.14 (slope
of best linear fit 2.04 10" %), respectively.

zsing b
+ =sin 260

/: +
(% w >

g(r,0)+esinwgt, (15

where the terne sinwyt is a periodic drive and

Despite the fact that the phase diffusion is smaller for the
modified R@sler system, it is more difficult to phase lock, as
shown in Fig. 6. Moreover, unlike the regular $ter equa-
tions, infrequent phase slips can still be observed for very
strong coupling values.

Lastly we demonstrate that the precision of the synchro-
nization is very different in the two cases. As argued in Sec.
I, an increase in the coupling strength will lead to a decrease
in the size of the synchronization wedd® if the term
Dy(R, ¢) does not play a significant role. Since the siz&\bf
variable @ whenever it is close to(r — a) 7+ 6,. This slow- ~determines the amount by which the phase differepge
ing occurs at different values dffor different values of, as  — ¢4l between the drive and response varies, we expect
in the illustrative example above. For our choice of param-tighter phase locking with an increasedtsee Fig. 2 How-
eters, the slowdown occurs betweén 0.7 for an orbit at ~ ever, if Dy(R,#) cannot be ignored its the influence in-
the inner edge of the attractor amd=1.127 for an orbit at ~ creases with the coupling strengthso that the se¥V may
the outer edge of the attractor. not shrink, or may even become larger. This is demonstrated

This modification of the Rssler equations is reminiscent in Fig. 7 in which the standard deviation é{(nTg) in the
of the one introduced if16] with one crucial difference. The Phase locked region are compared. The results show that the
present change of coordinates increases the dependencediference|¢— ¢yl stays large regardless of the valuesoh
the phase dependent sensitivi§,6 on r without signifi-  the case of the modified Bsler equations. Repeating the
cantly altering the amount of phase diffusion. By contrast, insimulations with different parameter values and different
[16] the Rassler equations were modified so as to increasdypes of periodic drives yields similar results.
the amount of phase diffusion significantly. Figure Z16]
illustrates that increasing phase diffusion makes phase syn- 0154 : . i
chronization more difficult. We illustrate how phase syn- )
chronization is similarly affected in the present case. o

Since our modification does increase the phase diffusion . »
of system(10) slightly, and our goal is to compare synchro- 0.10+ ‘0 B
nization properties of systems with similar amounts of phase
diffusion, we use the unmodified Reler system withb

g(r,0)=1—sN(c(r—a)m+ 6,,02),

where M u,0?) =exg —(x—w)%(20%)] is an unnormalized
Gaussian-like function with a narrow peakwhose width is
determined byr?. The parametew=7 is set to the approxi-
mate inner radius of th&—y projection of the Resler at-
tractor. In the simulations we have chosép=0.77, c
=7/24, ands=0.5.

The effect of the terng(r, 6) is to slow down the phase

=0.16 for comparison. The phase diffusion coefficient can
be estimated as the slope of the varian¢&p(n)

0.05

[
Q,

[o)

I
‘%._' ,l./ ,,O

—((n)))?) [16,4]. The results are given in Fig. 5 and show
that the slope of the variance as a function of the number of
cycles is 2.0410 2 in the first and 2.3% 10 2 in the sec-
ond case. We also compare the varianced¢fn+1)T)
—6(nT), whereT is the average period of oscillation and
find a variance of 0.210 in the first and 0.303 in the second FIG. 6. The solid and open dots form the boundaries of the 1:1
case. Thus the phase diffusion is stronger in the unmodifiegdrold tongues for the modified Reler system wittb=0.14 and
Raossler system witlh=0.16. the unmodified Rssler system withh=0.16, respectively.

. o)
G‘Qx‘,xol
0.00 +———F——7—
0992 099 1.000 1.004
,/0,

1.008
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merical estimates to find an optimal coordinate change. In
particular, systems for which several phase variables can be
ol defined may be also considered using the same techniques
- | (o] o) o } [24]
] o 02 00°00 The main difference between CPS and phase locking in
periodic systems is that the phase sensitivity cannot be as-
sumed to be a function of the phase only. The stronger the
] "sNmmnganm | dependence on other variables, the less the system will be-
have like a periodic system when driven by a periodic signal.
As shown in Sec. V this means that it may not be possible to
synchronize some phase-coherent systems, even if they ex-
hibit very small phase diffusion. Moreover, even if phase
synchronization is possible, in such cases the phase differ-
€ ence between the drive and response may vary by an arbi-
FIG. 7. The variance of the distributiaf(nTg) in the region of ~ trary amount regardiess of the amplitude of the drive.
phase locking forw=w,. The rectangles and open dots represent L€t us also note that this view of chaotic synchronization
data from the unmodified and modified §ter system respectively. 1S related to the analysis of randomly or chaotically driven
The stronger dependence of the phase dependent sensitiikyron  periodic oscillators[39,43. We may think of the term
the case of the modified Reler system leads to less precise phased(R, ¢) as arising from the chaotic or random part of a sig-
locking at all coupling values. nal acting on a periodic oscillator since the two situations are
equivalent from a mathematical perspective. In cases where

This observation has significant consequences. In systemR, ¢) varies slowly compared te, the adiabatic approxi-

in which the termD (R, ¢) is significant, phase locking may mations used if39] still apply. Following the arguments
occur for sufficiently strong coupling values, however thegiven in [20] it is also straightforward to extend this ap-
phase difference between the drive and response may stproach to the case of coupled chaotic systems. This case will
vary significantly. Moreover, an increase in the couplingbe examined further elsewhere.

strength may not decrease the variation in the phase differ- In view of these arguments, we expect that our approach
ence. Since the phase difference may vary by a large amouritas applications beyond CPS. If there exists a change of
phase synchronization may be impossible to detect in sucgoordinates in the neighborhood of a chaotic attractor such
systems. This type of phase synchronization may also not b&at in these coordinates certain directions are nearly neutral,

adequate in systems in which precise timing is necessaryve expect the system to be more malleable along these di-
such as neural systems. rections. Thus some coordinates may be easier to synchro-

nize than others and partial synchrony of such variables may
be achieved before full synchronization of the system occurs.

—

o), _,

0.1 | | I I
000 002 004 006 008 0.10

VI. CONCLUSION

Among different types of chaotic synchronizatipt,42] ACKNOWLEDGMENTS
CPS is of particular interest since it occurs at coupling
strengths that are considerably smaller than those necessaryWe thank C. E. Wayne and M. K. Stephen Yeung for
for complete synchronization. Because the phase corréiseful discussions.
sponds to a nearly neutral direction within the attractor, un-
der certain conditions only a small driving force is required  AppENDIX A: THE R, ¢ COORDINATE CHANGE
to control and entrain it. The dynamics in the radial direc-
tions can be far more unstable and therefore more difficult to We provide sufficient conditions for the existence of co-
control and synchronize. Chaotic phase-coherent systems cfdinatesR and ¢ in which the equations of motion take the
exhibit a richness of behavior while their phase dynamics igorm (4) and(5).
still relatively tame, a property with important implications ~ Theorem 1.Let the systemX’=f(X) have a compact
for biological and other systeni$§]. attractorA on which aT-periodic phase coordinate is de-

We have shown that the ideas used to study phase lockirigned, and assume théis differentiable. Moreover, assume
of periodic oscillators can be extended directly and naturallythat the return timeTr to the section®=0 of any point
to the chaotic case. This approach provides a way of predictR,®) = (R,,0) onA satisfies
ing how a phase-coherent system will phase lock to a peri-
odic d_riving signal. Systemgl0) and (11) were used as il- IT-Tg |<n<l (A1)
lustrative examples because they are most commonly 0
encountered in the literature on CPS, and the change of co- ] )
straightforward manner. In the Appendix we show that thechange®— ¢ in a neighborhood oA such that¢ is T peri-
change of coordinates required in Sec. Il exists for mosdic and
phase-coherent systems. Therefore these ideas can be applied
more generally, although it may be necessary to employ nu- ¢'=1+8(R,p),
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where| 8| < 7+ €, except forg in a set of measure less than for all ® €[0,T) outside of a set of measurg Furthermore,

7. by differentiable dependence on initial conditions, the func-
Note that the different approaches for defining the phas@ion D can be chosen to be differentiable. We can now in-

of a chaotic systeni4,24,23 all result in a phase that is troduce a new coordinate

increasing in time. TheorerfAl) states that there exists a

change of coordinates i for any such phase, and thus, up ® D(Ry,s)
to discrepancies of size at most all these definitions are p=>— fo — —ds
equivalent, as long as there are no resonant modes. 1+D(Ro,S)

Before we give an outline of the proof it is instructive to
consider the case of a system with a limit cycle with period
T. We can always define a phadethat satisfies

By our choice ofD this is a smooth change of coordinates

and¢’' =1+ 6(R,®) wheredis the quantity on the left side

of inequality (A3). This proves the assertion.

®'=1+D(P), There are several important properties of this change of
coordinates. First, note that it is performed along every pe-

where @ is T periodic andD(®)>—1 and [JD(®)d®  fiod of . In particular, the value ofjz =|T—Tg | deter-

=0. We can introduce a new phase coordinate mines the size 06(R,®) along one period o for the orbit
starting at R,,0). Therefore, the distribution oszo is a

b J‘I’ D(s) ds good indication of hows(R,®) behaves over many orbits.

o 1+D(s) It is also worth noting that i®’=0(1) in a neighbor-

hood of A then condition(Al) is equivalent to the existence
where ¢ is alsoT periodic. A direct computation shows that of a timeT such that
¢'=1. This change of coordinates stretches the parts in
which the phase moves quickly and compresses the parts |®(O)_¢(T)|<K’7
where it moves slowly, so that its motion becomes uniformfor K=0(1) and all orbits in a neighborhood &f Thus it is
The proof of the general case follows the same idea. Du@ matter of choice whether to look at the space or time Poin-
to Eq. (A1) and the assumption tha’'>0 we can write care section to determine whether the attractor is phase-

¢’'=1+D(R,P) whereD(R,®)<1 and coherent.
T The choice of the approximating functidB(Rg,T) is
f D(R(1),®(1))dt< 7 (A2) qlso somewhat arbitrary. For instance it is possible to choose
0 D(Ry,®)=D(Rg,®) for all ® outside of a set of small

measure. On the other hand we can choose the functions so

that ﬁ(RO,db)—D(RO,QD)aﬁO but remains small along the
entire orbit. As discussed in Sec. Il this does not have any
significant consequences if we only consider the coarse be-
havior, but a particular change of coordinates might be pre-
. . . ferred if a more detailed study is required.

D (II;?:D ??m)/ (g;tltD'(nR a (Dr;elgél;:rhggd ;A rg‘ﬁmf:tggt'og Lastly, let us remark even if the described change of co-
- o TAO' pp ) Y ordinates exists only on part of the attractor, some of the
D(Ro,®) so that[¢D(Ro,®)d®=0 and if R, is the R jdeas developed in this paper may still be applicable. If the
coordinate of the first return to the sectidn=0 of the orbit  atractor contains a fixed point, as for instance the Lorenz
starting at R,0) thenD satisfiedD(R,,T)=D(R;,0) and is  attractor, then conditionfAl) cannot be satisfied and a
differentiable at Ry, T)=(R1,0). Due to Eq.(A2) for any  change of coordinates of the type discussed above does not

along any orbit in a neighborhood & Moreover, we can
express theR(t) part of a solution with initial condition
(R(0),9(0))=(Rp,0) as a function ofb, i.e, we can define
R(®,Rp) uniquely ford [0,T) andR, in a neighborhood
of AN{d=0}.

given e>0 we can also choos? to satisfy exist. However, it is possible to find such a coordinate
change along orbits or portions of orbits that stay uniformly
R D(Rq,®) bounded away from the fixed point, which may lead to par-
D(Rg,®)—D(Ry,®) ————|<n+e€ (A3) tial phase coherence and phase locking d28).
1+ D(Rg,P)
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